
# Снижение стоимости разработки на 50% в GeoMechanics

Dan Doherty, MathWorks

"Using MATLAB is the fastest and most efficient way to produce a quality product."

Dr. Daniel Moos, GeoMechanics International



Один из интерфейсов комплекса GMI для буровых инженеров по определению оптимальной плотности бурового

Для извлечения максимального количества нефти из пластов-коллекторов по всему миру, нефтедобывающие компании бурят всё более сложные, глубокие скважины с аномальными условиями.

Для скважин несколько тысяч метров глубиной сложно поддерживать стабильность стенки ствола. Анализ показал, что проблемы при бурении, вызванные нестабильностью ствола скважины, ведут к потерям этих компаний около 6 млрд. долларов в год.

GeoMechanics International (GMI) разрабатывает инструменты для решения проблем нестабильности скважины. Среди них  $GMI \bullet SFIB^{\text{тм}}$ , набор инструментов для инженеров, позволяющий оценивать как изменения в траектории бурения, прочность породы и плотность бурового раствора влияют на стабильность.

Программное обеспечение MathWorks значительно уменьшает время и стоимость разработки продукта для GMI. «MATLAB — безусловно, самая удобная программная среда для научных разработок»,- говорит доктор Daniel Moos, старший вице-президент технологического подразделения GMI. «Она позволяет нам разрабатывать надежные продукты в кратчайшие сроки».

## Задача

В GMI решили разработать инструмент, который позволит нефтяным компаниям увеличить эффективность бурения, правильно задавая плотность бурового раствора для минимизации нестабильности ствола скважины.

Буровой раствор — это смесь жидкостей, утяжелителя и химикатов, используемых для очистки шлама из скважины в процессе бурения. Для стабильности ствола скважины этот раствор должен быть определенной плотности. Если он слишком лёгкий, скважина будет расширяться, приводя к избыточной выемке и последующим обрушением скважины. При слишком тяжелом буровом растворе порода будет трескаться, что приведет к потерям дорогостоящего раствора, понижению поддержки и возможному обрушению скважины.

Задание правильной плотности требует детального понимания взаимосвязей межу полем напряжений, естественных трещиноватостью, прочностью горной породы, внутрипластовым давлением и профилем скважины. Обычно нефтяные компании используют геофизические измерения и простые модели для составления рекомендаций по плотности раствора.

В лучшем случае, стандартные способы дают только половинчатый результат. В GMI же хотели создать инструмент, в котором применяется усовершенствованное понимание причин нестабильности скважины для более глубокого анализа. Это должен быть инструмент, умеющий решать сложные задачи, но простой в применении, чтобы его могли использовать полевые инженеры.

### Решение

С помощью MATLAB® GMI создали инструмент для проведения быстрого прямого моделирования и симуляции методом Монте-Карло во время бурения для оценки рисков и определения параметров, имеющих наибольшее влияние на снижение этих рисков.

Сначала они разработали набор модулей для ограничения полного тензора напряжений (взаимодействие напряжений в трех измерениях во время бурения). Входные данные для этих модулей впервые включали в себя количественные наблюдения предыдущих неудачно пробуренных скважин, траектории которых были известны. МАТLAB использовался для проверки и поиска алгоритмов для определения соответствия тензоров напряжений с наблюдениями, а также для разработки интерактивного графического интерфейса (GUI), помогающего работе с интерпретируемыми результатами.

Второй набор программных компонент создавался для использования этих знаний о напряжениях для предсказания стабильности скважины и поиска оптимальных траекторий бурения и плотностей бурового раствора. Здесь опять использовался созданные графический интерфейс для отображения результатов анализа в простой и наглядной форме.

На последнем этапе использовался MATLAB Compiler™ для превращения кода MATLAB в независимое приложение, которое смогут использовать даже инженеры, не знакомые с MATLAB.

«MATLAB Compiler позволил нашим инженерам-разработчикам создать конечный продукт, убрав лишнее звено в производственном процессе», сказал D. Moos. «Кроме этого, он представляет

простой способ защитить нашу продукцию и не зависит от платформы с точки зрения нашего исходного кода, что важно для нас».

## Результаты

### Стоимость разработки уменьшилась вдвое.

«MATLAB позволяет нам быть инженерами и проектировщиками»,- объясняет D.Moos. «Он устраняет помехи в процессе разработки, когда проектировщику надо передать алгоритмы программисту для реализации в интерфейсе. Мы сравнивали MATLAB и Java™, и получилось, что стоимость разработки продукта уменьшается вплоть до 50% при использовании MATLAB».

### Быстрая реакция на требования заказчика.

«Тулбоксы MathWorks позволяет быть нам гибкими по добавлению новой функциональности в наши продукты», - говорит D.Moos. «К примеру, мы используем Statistics Toolbox для определения влияния неопределенности входных параметров на выходные значения на основе анализа Монте-Карло по оценке рисков. Затем мы включаем полученные алгоритмы в наши продукты. Это было бы невозможно без Statistics Toolbox».

### Миллионы долларов затрат на бурение сэкономлены.

Более 30 крупнейших нефтегазовых компаний сэкономили миллионы долларов. Это стало возможно благодаря продуктам GMI (основанных на инструментах MATLAB) по предотвращению повреждения дорогостоящих скважин и максимизации добычи нефти на месторождения по всему миру.